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Abstract

Presented in the paper are the results of an investigation of 2D heat conduction effects on the transient heat transfer of a rotating disk
heated up to a non-uniform initial temperature and suddenly subjected to unsteady cooling by still air. A self-similar solution of the
transient laminar convective heat transfer confirmed that the heat transfer coefficient rapidly becomes time-independent and equal to
its value at steady-state conditions. An analytical solution of the unsteady two-dimensional heat conduction inside a disk made of Plex-
iglas� confirmed that the known infinite-slab approach can still be used as a transient technique for determining heat transfer coefficients.
Use of the regular heat transfer regime theory for the same purpose can be recommended only for the cases with the moderate initial
temperature non-uniformity.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Transient heat transfer investigations are a matter of
great importance both from the fundamental and applied
points of view. One of the most widely used applications
comprise various transient experimental techniques of
determining surface heat transfer of a body. Such tech-
niques, currently employing thermochromic liquid crystals,
are based on the known fact that after a certain period of
time from the beginning of the cooling process, the surface
heat transfer coefficient becomes a time-independent func-
tion equal to its value for steady-state heat transfer under
the same boundary conditions. The heat flux in this situa-
tion can be computed from more or less simple analytical
solutions for unsteady heat conduction inside solid bodies
at known surface temperatures [1].
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Most often, the experimental data analysis is based on
the theory of one-dimensional heat conduction in a semi-
infinite slab with a convective boundary condition at the
interface between the slab and the cooling/heating medium
with a step change in the coolant’s temperature T1 [2–5]

F tðtÞ ¼
T wðtÞ � T1
T w;i � T1

¼ expðc2Þ � erfcðcÞ;

c ¼ h2

ffiffiffiffiffiffiffi
awt
p

=kw: ð1Þ

Having measured the temporal curve of the local surface
temperature, one can solve (1) for the heat transfer coeffi-
cient. Use of this technique is restricted by the obvious con-
sideration that heat conduction must involve only a small
fraction of the wall thickness for the infinite-slab assump-
tion to hold. Therefore, the measurement time is strictly
limited: by the value Fo = 1/4 in accordance with the clas-
sical theory [6] or Fo = 1 according to [7]. As shown in
[8,9], significant deviations of the experimental results [3]
from the standard data of other authors might have
occurred because of disregarding the aforementioned
restriction in the measurement time.
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Nomenclature

a thermal diffusivity
b outer radius of disk
Bi1 Biot number h1b/kw

Bi2 Biot number 0.5h2s/kw

c0� constant in Eq. (4) i.e. DT n�¼0

Ft(t) relative instantaneous wall temperature,
(Tw(t, r) � T1)/(Tw,i(r) � T1)

Fo Fourier number 4awt/s2

h heat transfer coefficient
H parameter, b/(s/2)
k thermal conductivity
K1 constant in Eq. (5)
n* constant exponent in Eq. (4)
Nub Nusselt number qwb/[k(Tw � T1)]
Pr Prandtl number, m/a
qw local heat flux on the wall
r, u, z radial, tangential and axial coordinate
Reu rotational Reynolds number xb2/m
s thickness of a slab or a disk
Tw(t, r) instantaneous local temperature of the disk’s

surface
t time

vr, vu, vz radial, tangential and axial velocity compo-
nents

x dimensionless coordinate r/b
y dimensionless coordinate z/(s/2)

Greek symbols

DTt(t, r) instantaneous local temperature difference
Tw(t, r) � T1

DT(r) initial local temperature difference, Tw,i(r) � T1
H(t,z) dimensionless temperature (T � T1)/

(Tw(r, t) � T1)
h(t, r,z) dimensionless temperature ðT � T1Þ=c0�
m kinematic viscosity
x angular speed of rotation of the disk

Subscripts

i initial conditions (t = 0)
w wall (z = 0)
1 infinity
1 disk’s cylindrical surface
2 disk’s flat surface
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An advantage of solution (1) is its simplicity that can
break once one has to take into consideration curvature
of the surface at which the measurements are to be made [2].

An alternative to (1) is to use the solution for the
unsteady heat transfer of a slab of a finite thickness s/2,
where the back face is insulated [10], or a slab of a finite
thickness s with identical heat transfer coefficients on both
faces [1]

F tðtÞ ¼ hðt; y ¼ 1Þ;

hðt; yÞ ¼
X1
m¼1

Em cosðlmyÞ expð�l2
mFoÞ; ð2Þ

Em ¼
2 sinðlmÞ

lm þ sinðlmÞ cosðlmÞ
; cotðlmÞ ¼ lm=Bi2; ð3Þ

where eigenvalues lm are defined by Eq. (3).
In particular, Eq. (2) was shown to agree well with the

numerical solution of the unsteady conjugate heat transfer
problem for a disk rotating in still air at laminar flow
regime [9]. In agreement with [10], the authors [8,9] also
suggested to use solution (2) and (3) to determine heat
transfer coefficients basing on the instantaneous surface
temperature measurements in view of the fact that (2)
degenerates just to the first term of the Fourier series at
Fo P 0.3. This reveals one of the important fundamental
properties of the transient heat transfer such as an existence
of the so-called regular regime of heating or cooling of a
body when the temporal dependence of the local tempera-
ture in any location of the body follows a simple exponen-
tial function [1].
Strictly saying, both solutions (1) and (2) are valid only
for the initially isothermal surfaces. In many industrial
applications, the surface temperature varies at least in the
streamwise direction. A remedy for such a situation was
suggested via dividing the experimental surface on the
rather narrow quasi-isothermal zones [3]. Within each
zone, the surface temperature was assumed to be constant
and undergoing a spatial step change at the boundary
between the neighboring zones (instead of the monotonic
temperature variation that takes place in practice). How-
ever, the validity of this approach is under question, since
the experimental data [3] are themselves controversial. An
attempt to find a quantitative estimate of the 2D heat
conduction effects is made in [4].

All the investigations, performed in the present research,
deal with a single rotating disk in still air (Fig. 1). This
problem has itself an important meaning in view of the
numerous industrial applications of rotating disks (turbo-
machinery, computer disk drives, electrochemistry etc.).
Another reason is that the results presented in this paper
are strongly based on the previously obtained outcomes
of the transient heat transfer investigations of a single iso-
thermal disk [8,9].

Thus, the objective of the present investigation consists
in finding a quasi-conjugate heat transfer solution for a
disk initially preheated non-uniformly, which includes (a)
a self-similar solution of the transient laminar convective
heat transfer, (b) a solution of the unsteady two-dimen-
sional heat conduction problem with a non-uniform initial
temperature distribution, (c) answer to the question
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Fig. 1. Geometrical arrangement of a rotating disk in still air.
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whether the shape of the initial temperature non-unifor-
mity holds with time, and (d) validation of a transient
technique for the experimental determination of the heat
transfer coefficient basing on the regular heat transfer
regime theory, which is free of the aforementioned restric-
tion in the time of measurements.

The present research is aimed at clarifying the theoreti-
cal aspects of the transient experimental techniques of find-
ing the heat transfer coefficients, i.e. validation of the
different transient heat conduction solutions used in these
techniques. Therefore we refer all the readers interested
in technical details of the experimental technique discussed
(e.g. elimination of the experimental noise etc.) to papers
[2–7] and references.

2. Statement of the problem

A single disk rotating in still air is pre-heated in such a
way that its surface temperature Tw,i(r) follows a power-
law distribution

DT ¼ c0�xn� : ð4Þ
Boundary condition (4) has been widely used in model-

ing convective heat transfer in rotating-disk systems [11–
15]. Eq. (4) has three major advantages. First, changing
the exponent n* from negative to positive values allows
modeling a variety of the wall temperature distributions
with Tw decreasing, constant or increasing in the stream-
wise direction. Second, boundary condition (4) allows
obtaining an exact self-similar solution of the steady-state
thermal boundary layer equation for laminar flow and very
accurate approximate analytical solutions of the thermal
boundary layer equation both for laminar and turbulent
flows using an integral method [11–15]. Third, use of Eq.
(4) engenders constant values of the heat transfer coeffi-
cients for laminar flow studied in the present paper that
alleviates solution of the heat conduction problem.

While solving the heat conduction problem, one can eas-
ily discover two drawbacks of the boundary condition (4).
First, it does not generally hold at r = 0, because it does
not provide axial symmetry of the disk’s temperature at
this point. Second, choice of a thermally isolated outer
cylindrical disk’s surface invalidates Eq. (4) also at r = b.
None of these restrictions is valid in solving the thermal
boundary layer equation for an infinite-radius disk using
boundary condition (4) [11–15]. Since such a solution is
also an integral part of the present research, we still keep
on using boundary condition (4) throughout the paper
and intend also to figure out the magnitude of the possible
numerical inaccuracies in the heat conduction solution
caused by Eq. (4). More detailed insight into this particular
feature of the obtained solution is presented in the section
discussing the results.

Thus, it is assumed in the present research that distribu-
tion (4) exists at t = 0. Following [3,8,9], we consider a
rotating disk (b = 0.123 m, s = 0.01 m), which at t = 0
starts cooling down to temperature T1 without additional
input of heat.

The Nusselt number distribution for the steady-state
conditions follows the power law [11–15]

Nub ¼ K1Re1=2
u ; ð5Þ

where the constant K1 is tabulated in [11] depending on the
values of the Prandtl number and n*.

3. Self-similar solution of the transient laminar convective

heat transfer problem

The unsteady thermal boundary layer equation for a
disk is [8]

oT
ot
þ vr

oT
or
þ vz

oT
oz
¼ a

o2T
oz2

: ð6Þ

Rewriting Eq. (6) using the non-dimensional tempera-
ture H(t,z), one obtains

oH
ot
þ H

DT t

oDT t

ot
þ vrH

1

DT t

dDT t

dr
þ vz

oH
oz
¼ a

o2H
oz2

: ð7Þ
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For the instantaneous heat transfer coefficient to be
equal to its stationary value existing during the steady-state
conditions before onset of the unsteady cooling/heating of
the disk, DTt should behave in such a way that

DT tðt; rÞ ¼ DT ðrÞF tðtÞ; ð8Þ
1

DT t

dDT t

dr
¼ 1

DT
dDT
dr

; ð9Þ

with Ft(t) to be a function of the only variable t. This is an
indispensable condition, because the first two terms in Eq.
(7) become negligible very fast [8], and namely the third
term determines the effect of the radial disk’s surface distri-
bution on heat transfer.

In doing so Eq. (7) takes the following form [8]

oH
ot
þ H

F t

oF t

ot
þ vrH

1

DT
dDT
dr
þ vz

oH
oz
¼ a

o2H
oz2

: ð10Þ

In particular, in view of condition (4), Eq. (10) trans-
forms to

oH
ot
þ H

F t

oF t

ot
þ n�H

vr

r
þ vz

oH
oz
¼ a

o
2H
oz2

: ð11Þ

Employing self-similar functions and variables derived
in [8] F(g) = vrr/t, G(g) = vut/r, H(g) = vz(t/m)1/2, P(g) =
�pt/(qm) and g = z/(mt)1/2, one can reduce Eq. (11) to a
self-similar form

H00 ¼ Pr½g�HþH0ðH � g=2Þ þ n�F H�;

g� ¼
t

F t

dF t

dt
; ð12Þ

where primes indicate derivatives with respect to g. The
Nusselt number is calculated from the formula

Nub ¼ K1Re1=2
u ; K1 ¼ �

1ffiffiffiffiffi
xt
p dH

dg

� �
g¼0

: ð13Þ

Functions F, G, H and P are time-independent and can
be found from the solution of the steady-state self-similar
Navier–Stokes equations [8].

Comparisons of the self-similar solution results at
Tw = const (or n* = 0) with the numerical simulations of
this problem in the conjugate statement obtained using
the commercial CFX-5 software [8] showed very good
qualitative and quantitative agreement of both approaches.
Therefore an extension of the self-similar analysis to the
case of non-zero values of n* is deemed justifiable and capa-
ble of producing plausible results.

4. Solution of the unsteady two-dimensional problem of heat

conduction in a disk

Equation of unsteady 2D heat conduction in the disk
and boundary conditions are [1]

oh
oFo
¼ 1

H 2

o
2h

ox2
þ 1

x
oh
ox

� �
þ o

2h
oy2

; ð14Þ

Fo ¼ 0 : h ¼ xn� ; ð15Þ
x ¼ 0 :
oh
ox
¼ 0; x ¼ 1 :

oh
ox
¼ �Bi1h; ð16Þ

y ¼ 0 :
oh
oy
¼ 0; y ¼ 1 :

oh
oy
¼ �Bi2h: ð17Þ

This system is solved using the method of separation of
variables [1]. The resulting solution has the following form:

hðFo; x; yÞ ¼
X1
n¼1

X1
m¼1

DnEmJ 0ðlxnxÞ cosðlymyÞ

� exp½�ðl2
xn=H 2 þ l2

ymÞFo�; ð18Þ

Dn ¼ 1F 2ð1þ n�=2; 1; 2þ n�=2;�l2
xn=4Þ=ð2þ n�Þ

0:5½J 2
0ðlxnÞ þ J 2

1ðlxnÞ�
;

J 1ðlxnÞ
J 0ðlxnÞ

¼ Bi1

lxn
: ð19Þ

Here, 1F2 is a hypergeometric function of the argument
�l2

xn=4 [16,17]. Constant Em and eigenvalues lym are given
by Eqs. (3). At n* = 0 the numerator of Eq. (19) is equal to
J1(lxn)/lxn, and Eq. (18) coincides with the solution pre-
sented in [1]. Obviously, neglecting radial heat conduction
effects one can reduce Eq. (18) to Eq. (2).

Using a thin-slab approximation, one can neglect tem-
perature variation inside the disk in the y-direction and
substitute the last term in Eq. (14) with the so-called source
term �hBi2. In doing so, the final solution of Eq. (14)
reduces to

hðFo; xÞ ¼
X1
n¼1

DnJ 0ðlxnxÞ exp½�ðl2
xn=H 2 þ Bi2ÞFo�: ð20Þ
5. Analysis of the solutions for unsteady heat conduction in a

disk

5.1. Convective heat transfer

In the present research we study effects of the non-uni-
form initial temperature distribution for n* = �1, �0.5,
�0.25, 0, 0.5, 1 and 2 at Pr = 0.71. For the steady-state
conditions this results in values of the constant K1 in Eq.
(5) equal to K1 = 0.1893, 0.2624, 0.2952, 0.3259, 0.3818,
0.4319 and 0.5185, respectively.

The basic modeling variant deals with a disk made of
Plexiglas� with its low heat conductivity. The physical
properties of Plexiglas� are [3] kw = 0.19 W/(m2 K),
aw = 1.086 · 10�7 m2/s and of air [1] k = 0.02624 W/
(m2 K), a = 2.216 · 10�5 m2/s, Pr = 0.71.

For comparison purposes, we have also computed
unsteady cooling of a disk made of aluminum, whose
physical properties are [18] kw = 204 W/(m2 K), aw =
0.842 · 10�4 m2/s.

Exactly as in [8,9], we hold the value of Bi2 = 0.395 con-
stant throughout the numerical computations. Once K1

varies with n*, the condition Bi2 = const means a different
value of Reu for every particular n* provided that
Reu = 5.35 · 104 at n* = 0.
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In works [8,9] the author mentioned that the constant K1

attains its stationary values for n* = 0 already at xt � 1000
or t � 19 s with Ft being equal to 0.876. In this case the
deviation of K1 from its stationary value makes 0.14% that
is obviously a too strict criterion. Assuming a standard 1%
deviation being sufficient, one can obtain the stationary
value of K1 already at xt � 130, t � 2.5 s with Ft being
equal to �0.96. Basing on the very same 1% deviation,
the constant K1 reaches its stationary value at xt � 40
for n* = 2 and at xt � 300 for n* = �1. In both cases
t � 2 s, while the Reynolds number Reu and angular speed
of rotation x decrease with increasing n* to keep the Biot
number constant at Bi2 = 0.395. For these small process
times Eqs. (2) and (3) coincide and predict values of Ft

equal to Ft � 0.96.
Assuming that Reu = 5.35 · 104 is invariant, K1 anyway

becomes stationary very quickly: at t � 5.5 s for n* = �1
and at t � 0.7 s for n* = 2.

In order to render the temporal dependencies of all the
functions in the present paper the most general appearance,
a non-dimensional time in the form of the Fourier number
was used. The interrelation between the real and non-
dimensional time is: for the Plexiglas� disk t = 230.17Fo,
for the aluminium disk t = 0.297Fo.

5.2. Unsteady temperature distributions in an isothermal disk

at n* = 0

Detailed results for this case are documented in [8,9].
Here, we present some new findings in comparison with
what was found in [8,9]. Variation of the non-dimensional
disk surface temperature Ft with time is shown in Fig. 2.
One-dimensional (2) and two-dimensional (18) solutions
for a slab of a finite thickness coincide over the whole range
of the variation of the Fourier number. Solution for a slab
of an infinite thickness (1) agrees well with Eqs. (2) and (18)
only up to a certain limiting value of Fo, which can be esti-
mated as Fo = 0.456, 0.608 and 0.790 when the divergence
of Eqs. (1) and (2) is set as 1%, 2.5% and 5%, respectively.
Having passed this threshold value of the argument Fo,
data from Eq. (1) exceed more and more noticeably solu-
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Fig. 2. Variation of Ft versus Fo at n
*

= 0. 1 – Eq. (1); 2 – Eq. (2); 3 –
Eq. (18); 4 – Eq. (20).
tions (2) and (18). From the physical point of view this
means that a finite-thickness disk cools down more and
more rapidly than an infinite-thickness one. Solution (20)
for a thin disk deviates from Eq. (18) quite noticeably at
Fo < 2 an Fo > 4. This means that the 0.01 m thick disk
considered in the present paper as a basic geometry is insuf-
ficiently thin for the solution (20) to be valid. Results of
additional computations showed that for numerical data
from Eqs. (18) and (20) to coincide the disk should be
0.001 m thick. Thus, solution (20) has no use for the pres-
ent research and will not be discussed further in this paper.

5.3. Unsteady temperature distributions in a non-isothermal

disk

At the beginning we will discuss the results obtained for
the disk made of Plexiglas�. The results obtained basing on
solution (18) differ for the cases where n* is moderately or
strongly different from zero. Cases with n* = �1 and 2
illustrated in Figs. 3 and 4 should be classified as those
strongly different from zero. During the cooling process,
curves of the normalized wall temperature hw/hw(x = 1)
seem to repeat the initial power-law distributions (4) for
the most part of the disk. Plots of hw/hw(x = 1) at
n* = �0.25, �0.5, 0.5 and 1 (omitted here to save space)
behave in the same way. There are two visible specific fea-
tures of the plots of hw/hw(x = 1) worth mentioning here.

First, Eq. (4) does not agree in general with boundary
conditions (16) and (17). Therefore, solution (18) adjusts
itself to Eqs. (16) and (17) as Fo increases, thus creating
instantaneous distributions of hw/hw(x = 1) distorted in
the neighborhood of the points x = 0 and x = 1 as com-
pared with Eq. (4). Hence, the temporal behavior of the
heat transfer coefficient h2,t should be studied within a nar-
rower region, say, at x = 0.2–0.9.

Second, at small Fourier numbers the aforementioned
mathematical contradiction of Eqs. (4) and (16), (17)
engenders oscillations of the temperature profiles visible
in Figs. 4 and 5. This is a modest price to be paid for the
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Fig. 3. Variation of hw/hw(x = 1) = h(Fo,x,y = 1)/h(Fo,x = 1,y = 1)
according to Eq. (18) versus x at n

*
= 2. 1 – Eq. (4); 2 – Fo = 0.217; 3 –

Fo = 0.652; 5 – Fo = 2.172.
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possibility to operate with the boundary condition (4)
necessitated in Section 2.

An opportunity to discern the differences in the cases
with moderate and strong deviations of n* from zero is
provided in Fig. 5 where the instantaneous surface tem-
perature profiles hw are plotted as divided by xn� . The
enlarged scale of Fig. 5 shows that for the initial radial sur-
face temperature distributions (4) moderately different
from the isothermal case (e.g. n* = 0.5) the non-stationary
plots of hw=xn� look like horizontal straight lines over the
region x = 0.2–0.95 (and even the initial oscillations at
Fo = 0.00434 are almost negligible). This in turn means
that conditions (8) and (9), which are necessary for the
transient experiment to be valid, hold at x = 0.2–0.95 for
the whole duration of the cooling process. When the tem-
perature distributions (4) strongly deviate from the isother-
mal case (e.g. n* = 2), the plots of hw=xn� at relatively small
values of Fo (e.g. still at Fo = 0.217) oscillate around some
horizontal lines. However, following the further increase in
Fo the curves of hw=xn� become more noticeably inclined
towards the outer edge of the disk (i.e. towards the value
x = 1). The reason lies in the redistribution of heat owing
to the radial heat conduction from the more heated outer
part of the disk into its less heated inner part. Eventually,
one obtains a distorted (as compared with Eq. (4)) distribu-
tion of hw=xn� at high values of Fo, which does not comply
in full with conditions (8) and (9). This phenomenon is
more noticeable for positive values of n* than for negative
ones, because at positive of n* the total amount of heat
accumulated by the hotter part of this disk is larger
(because the hotter part of the disk is volumetrically larger
in this case).

5.4. Transient values of the heat transfer coefficient based on

the infinite-slab solution

However, the target quantity in the present investigation
is the heat transfer coefficient rather than the surface tem-
perature. Values of the heat transfer coefficient computed
with the use of Eqs. (1) and (2) for an isothermal disk at
n* = 0 are presented in Fig. 6. Assuming Eq. (2) to be a true
solution for the unsteady heat transfer and specifying a
constant value of h2 in the boundary condition (17), we
have equated Eqs. (1) and (2) and computed ‘‘transient’’
values of the heat transfer coefficient h2,t from Eq. (1)
depending on the Fourier number. In doing so we have imi-
tated the conditions that take place during transient exper-
iments, with Eq. (2) playing a role of the ‘‘experimental’’
data source. The data obtained and plotted in Fig. 6 as
curve 1 testify that experimental technique based on the
use of Eq. (1) can produce valid experimental data for
h2,t again up to the certain limiting value of Fo. It can be
estimated as Fo = 0.3, 0.391 and 0.487 in order for the
deviation of h2,t from h2 not to exceed 1%, 2.5% and 5%,
respectively. These threshold values are lower than those
obtained in subsection 5.2 at the comparison of values Ft

from Eqs. (1) and (2). The explanation lies in the fact that
an increase in h2,t leads to a correspondent increase in the
function exp(c2) and a decrease in the function erfc(c),
which form a product in Eq. (1) and thus mutually com-
pensate in part the deviation of h2,t from the pre-deter-
mined value h2. Thus, basing on the 1%-restriction in the
error of h2,t, the limiting measurement time should be less
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than Fo = 0.3 or 69 s that agree rather with the classical
value Fo = 1/4 [6] than with the revised suggestion Fo = 1
[7].

The data for the heat transfer coefficient h2,t, obtained
for all studied input values of n* from �1 to 2 using the infi-
nite-slab solution and averaged over the region x = 0.2–0.9
to avoid the oscillations of the obtained solution at low Fo,
agree at the maximal discrepancy of 1% with line 1 in
Fig. 6. Thus the fundamental conclusion from this finding
is that the infinite-slab approach (1) is still valid as an
experimental transient technique also for the cases with
strong initial radial (i.e. streamwise) temperature gradients
in the surface under investigation. Of course, this conclu-
sion is justifiable for the disks made of Plexiglas�.

5.5. Transient values of the heat transfer coefficient based on

the regular heat transfer regime theory

An alternative technique of determining the heat trans-
fer coefficient from the experimentally measured instanta-
neous distributions of the surface temperature is based on
the theory of the regular heat transfer regime [1]. The key
statement of this theory is that with the increasing Fourier
number the series solutions (2) and (18) degenerate just to
their first terms. Taking a derivative of logarithm of the
first term of (18) with respect to time, one can obtain

� ohðFo; x; 1Þ
ot

¼ ðl2
x1=H 2 þ l2

y1Þ
a

ðs=2Þ2
¼ m; ð21Þ

� ohðFo; x; 1Þ
ot

¼ l2
y1

a

ðs=2Þ2
¼ m: ð22Þ

Solution (22) for the disk, whose outer rim is thermally
insulated to avoid radial conduction effects in this location
(lx1 = 0), is more convenient and will be used in the further
derivations. The regular regime of heat transfer takes place
when the experimentally measured curve of the function
�oh(Fo,x, 1)/ot becomes constant m. Having experimentally
found m and keeping in mind Eq. (3), one can easily deduce

ly1 ¼ 0:5s
ffiffiffiffiffiffiffiffiffi
m=a

p
; h2;t ¼

k
ffiffiffiffiffiffiffiffiffi
m=a

p
cotð0:5s

ffiffiffiffiffiffiffiffiffi
m=a

p
Þ
: ð23Þ

Obviously, Eqs. (22) and (23) can be obtained from solu-
tion (2), (3) that disregards radial conduction effects.
Assuming again that Eq. (2) is a true solution for the
unsteady heat transfer at a constant value of h2 in the
boundary condition (17), we have computed instantaneous
values of m and ‘‘transient’’ values of the heat transfer
coefficient h2,t depending on Fo. Values of h2,t presented
in Fig. 6 decrease quite rapidly. Already at Fo = 0.543
errors in determination of h2,t are equal to 1% and become
negligible with the further increase in the Fourier number.

The advantage of approach (23) consists in the fact that
the regular heat transfer regime, once it is already estab-
lished, imposes no restriction on the duration of measure-
ments within the practical timescale providing visible
differences between the surface and ambient temperatures.
Within these time limits the heat transfer coefficient h2,t

remains constant.
At moderate radial surface temperature gradients, i.e. at

n* from �0.5 to 0.5, and for radial locations at x = 0.25–
0.9, solution (23) as a basis for the experimental technique
is still valid. The curves of the radial distributions of the
heat transfer coefficient h2,t obtained using the regular heat
transfer regime theory and plotted in Fig. 7 can serve as an
evidence of this conclusion. At n* equal to �1 and 1 the
region of the validity of Eq. (23) narrows down to
x = 0.45–0.85, while at n* = 2 approach (23) cannot be
recommended at all. Thus the conclusion is that the regular
heat transfer regime theory has restrictions attributed to
the radial heat conduction effects at high values of n*,
which distort the initial temperature distribution (4) and
finally the computed radial curves for h2,t at high Fo. A
remedy may consist in the use of the disks (or, in general,
the objects of the experimental study) made of the materi-
als with lower thermal conductivity in comparison with
that of Plexiglas�.
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5.6. Disk made of aluminium

In order to further illustrate the effect of the disk’s mate-
rial, we have modeled unsteady cooling of a disk made of
aluminum. From the very beginning of the cooling process
even technique (1) is inapplicable, because even at t = 1 s
the distribution of hw/hw(x = 1) becomes radically dis-
torted in comparison with (4) owing to the radial heat con-
duction (see Fig. 8), so that one obtains very high positive
values of h2,t at x > 0.85 and very high negative values at
x < 0.8. Very rapidly the disk at the initial value n* = 2
becomes isothermal.

6. Conclusions

As the important results of the research fulfilled we
would like to mention the following:

(1) A self-similar solution of the transient laminar con-
vective heat transfer for the initially non-isothermal
disk. Similarly to what was obtained earlier for an
isothermal disk, the values of the heat transfer coeffi-
cient reached the steady-state values very rapidly (in
2–5.5 s).

(2) An analytical solution (18) of the unsteady two-
dimensional heat conduction problem at the non-
uniform initial temperature distribution (4).

(3) Formulation of conditions (8) and (9) necessary for
the shape of the initial temperature non-uniformity
to hold with time. These conditions are fulfilled in full
for the disk made of Plexiglas� in the sense of the
applicability of the infinite-slab approach (1), which
thus may be used as an experimental technique for
determining the heat transfer coefficients h2,t at all
the studied values of n* from �1 to 2.

(4) Validation of a transient technique for the experimen-
tal determination of h2,t basing on the regular heat
transfer regime theory. This technique is valid in full
at n* varying from �0.5 to 0.5, partially valid for n*

equal to �1 and 1, and cannot be recommended for
n* P 2.
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